collective computation

Canalization and control in automata networks: body segmentation in Drosophila melanogaster

We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level).

Schema redescription in cellular automata: Revisiting emergence in complex systems

We demonstrate that it is more feasible to compare cellular automata via schema redescriptions of their rules, than by looking at their emergent behaviour, leading us to question the tendency in complexity research to pay much more attention to emergent patterns than to local (micro-level) interactions.

Schema redescription in cellular automata: Revisiting emergence in complex systems

We present a method to eliminate redundancy in the transition tables of Boolean automata: schema redescription with two symbols. One symbol is used to capture redundancy of individual input variables, and another to capture permutability in sets of input variables: fully characterizing the canalization present in Boolean functions.

The role of conceptual structure in designing cellular automata to perform collective computation

Here we investigate the role of process-symmetry in CAs that solve the DCT, in particular the idea of conceptual similarity, which defines a novel search space for CA rules. We report on two new process-symmetric one-dimensional rules for the DCT which have the highest “balanced” performance observed to date on this task.